Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Health Aff (Millwood) ; 41(6): 846-852, 2022 06.
Article in English | MEDLINE | ID: covidwho-1879332

ABSTRACT

We used data from a statewide public health-health system collaboration to describe trends in COVID-19 vaccination rates by racial and ethnic groups among people experiencing homelessness or incarceration in Minnesota. Vaccination completion rates among the general population and people incarcerated in state prisons were substantially higher than those among people experiencing homelessness or jail incarceration.


Subject(s)
COVID-19 , Ill-Housed Persons , Prisoners , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Minnesota , Prisons , Vaccination
3.
Public Health Rep ; 137(2): 263-271, 2022.
Article in English | MEDLINE | ID: covidwho-1643028

ABSTRACT

OBJECTIVE: Robust disease and syndromic surveillance tools are underdeveloped in the United States, as evidenced by limitations and heterogeneity in sociodemographic data collection throughout the COVID-19 pandemic. To monitor the COVID-19 pandemic in Minnesota, we developed a federated data network in March 2020 using electronic health record (EHR) data from 8 multispecialty health systems. MATERIALS AND METHODS: In this serial cross-sectional study, we examined patients of all ages who received a COVID-19 polymerase chain reaction test, had symptoms of a viral illness, or received an influenza test from January 3, 2016, through November 7, 2020. We evaluated COVID-19 testing rates among patients with symptoms of viral illness and percentage positivity among all patients tested, in aggregate and by zip code. We stratified results by patient and area-level characteristics. RESULTS: Cumulative COVID-19 positivity rates were similar for people aged 12-64 years (range, 15.1%-17.6%) but lower for adults aged ≥65 years (range, 9.3%-10.7%). We found notable racial and ethnic disparities in positivity rates early in the pandemic, whereas COVID-19 positivity was similarly elevated across most racial and ethnic groups by the end of 2020. Positivity rates remained substantially higher among Hispanic patients compared with other racial and ethnic groups throughout the study period. We found similar trends across area-level income and rurality, with disparities early in the pandemic converging over time. PRACTICE IMPLICATIONS: We rapidly developed a distributed data network across Minnesota to monitor the COVID-19 pandemic. Our findings highlight the utility of using EHR data to monitor the current pandemic as well as future public health priorities. Building partnerships with public health agencies can help ensure data streams are flexible and tailored to meet the changing needs of decision makers.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , Data Collection/methods , Electronic Health Records/organization & administration , Program Development , Cross-Sectional Studies , Humans , Minnesota/epidemiology , Public Health Surveillance , SARS-CoV-2 , Sentinel Surveillance , Social Determinants of Health , Sociodemographic Factors
4.
PLoS One ; 16(3): e0248956, 2021.
Article in English | MEDLINE | ID: covidwho-1574916

ABSTRACT

PURPOSE: Heterogeneity has been observed in outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy and improve outcomes. The purpose of this study is to identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes. METHODS: This is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25, 2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected within 72 hours of admission. Principal component analysis was performed to visualize variable contributions to clustering. Multinomial regression models were fit to compare patient comorbidities across phenotypes. Multivariable models were fit to estimate associations between phenotype and in-hospital complications and clinical outcomes. RESULTS: The database included 1,022 hospitalized patients with COVID-19. Three clinical phenotypes were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comorbidities were most commonly phenotype III (p = 0.002), while patients with hematologic, renal, and cardiac (all p<0.001) comorbidities were most commonly phenotype I. Adjusted odds of respiratory, renal, hepatic, metabolic (all p<0.001), and hematological (p = 0.02) complications were highest for phenotype I. Phenotypes I and II were associated with 7.30-fold (HR:7.30, 95% CI:(3.11-17.17), p<0.001) and 2.57-fold (HR:2.57, 95% CI:(1.10-6.00), p = 0.03) increases in hazard of death relative to phenotype III. CONCLUSION: We identified three clinical COVID-19 phenotypes, reflecting patient populations with different comorbidities, complications, and clinical outcomes. Future research is needed to determine the utility of these phenotypes in clinical practice and trial design.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Phenotype , Aged , Comorbidity , Female , Humans , Male , Middle Aged , Retrospective Studies
5.
J Gen Intern Med ; 36(11): 3462-3470, 2021 11.
Article in English | MEDLINE | ID: covidwho-1231931

ABSTRACT

BACKGROUND: Despite past and ongoing efforts to achieve health equity in the USA, racial and ethnic disparities persist and appear to be exacerbated by COVID-19. OBJECTIVE: Evaluate neighborhood-level deprivation and English language proficiency effect on disproportionate outcomes seen in racial and ethnic minorities diagnosed with COVID-19. DESIGN: Retrospective cohort study SETTING: Health records of 12 Midwest hospitals and 60 clinics in Minnesota between March 4, 2020, and August 19, 2020 PATIENTS: Polymerase chain reaction-positive COVID-19 patients EXPOSURES: Area Deprivation Index (ADI) and primary language MAIN MEASURES: The primary outcome was COVID-19 severity, using hospitalization within 45 days of diagnosis as a marker of severity. Logistic and competing-risk regression models assessed the effects of neighborhood-level deprivation (using the ADI) and primary language. Within race, effects of ADI and primary language were measured using logistic regression. RESULTS: A total of 5577 individuals infected with SARS-CoV-2 were included; 866 (n = 15.5%) were hospitalized within 45 days of diagnosis. Hospitalized patients were older (60.9 vs. 40.4 years, p < 0.001) and more likely to be male (n = 425 [49.1%] vs. 2049 [43.5%], p = 0.002). Of those requiring hospitalization, 43.9% (n = 381), 19.9% (n = 172), 18.6% (n = 161), and 11.8% (n = 102) were White, Black, Asian, and Hispanic, respectively. Independent of ADI, minority race/ethnicity was associated with COVID-19 severity: Hispanic patients (OR 3.8, 95% CI 2.72-5.30), Asians (OR 2.39, 95% CI 1.74-3.29), and Blacks (OR 1.50, 95% CI 1.15-1.94). ADI was not associated with hospitalization. Non-English-speaking (OR 1.91, 95% CI 1.51-2.43) significantly increased odds of hospital admission across and within minority groups. CONCLUSIONS: Minority populations have increased odds of severe COVID-19 independent of neighborhood deprivation, a commonly suspected driver of disparate outcomes. Non-English-speaking accounts for differences across and within minority populations. These results support the ongoing need to determine the mechanisms that contribute to disparities during COVID-19 while also highlighting the underappreciated role primary language plays in COVID-19 severity among minority groups.


Subject(s)
COVID-19 , Ethnicity , Female , Hospitalization , Hospitals , Humans , Language , Male , Retrospective Studies , SARS-CoV-2
7.
medRxiv ; 2020 Sep 14.
Article in English | MEDLINE | ID: covidwho-807214

ABSTRACT

BACKGROUND: There is limited understanding of heterogeneity in outcomes across hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of distinct clinical phenotypes may facilitate tailored therapy and improve outcomes. OBJECTIVE: Identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes. DESIGN, SETTINGS, AND PARTICIPANTS: Retrospective analysis of 1,022 COVID-19 patient admissions from 14 Midwest U.S. hospitals between March 7, 2020 and August 25, 2020. METHODS: Ensemble clustering was performed on a set of 33 vitals and labs variables collected within 72 hours of admission. K-means based consensus clustering was used to identify three clinical phenotypes. Principal component analysis was performed on the average covariance matrix of all imputed datasets to visualize clustering and variable relationships. Multinomial regression models were fit to further compare patient comorbidities across phenotype classification. Multivariable models were fit to estimate the association between phenotype and in-hospital complications and clinical outcomes. Main outcomes and measures: Phenotype classification (I, II, III), patient characteristics associated with phenotype assignment, in-hospital complications, and clinical outcomes including ICU admission, need for mechanical ventilation, hospital length of stay, and mortality. RESULTS: The database included 1,022 patients requiring hospital admission with COVID-19 (median age, 62.1 [IQR: 45.9-75.8] years; 481 [48.6%] male, 412 [40.3%] required ICU admission, 437 [46.7%] were white). Three clinical phenotypes were identified (I, II, III); 236 [23.1%] patients had phenotype I, 613 [60%] patients had phenotype II, and 173 [16.9%] patients had phenotype III. When grouping comorbidities by organ system, patients with respiratory comorbidities were most commonly characterized by phenotype III (p=0.002), while patients with hematologic (p<0.001), renal (p<0.001), and cardiac (p<0.001) comorbidities were most commonly characterized by phenotype I. The adjusted odds of respiratory (p<0.001), renal (p<0.001), and metabolic (p<0.001) complications were highest for patients with phenotype I, followed by phenotype II. Patients with phenotype I had a far greater odds of hepatic (p<0.001) and hematological (p=0.02) complications than the other two phenotypes. Phenotypes I and II were associated with 7.30-fold (HR: 7.30, 95% CI: (3.11-17.17), p<0.001) and 2.57-fold (HR: 2.57, 95% CI: (1.10-6.00), p=0.03) increases in the hazard of death, respectively, when compared to phenotype III. CONCLUSION: In this retrospective analysis of patients with COVID-19, three clinical phenotypes were identified. Future research is urgently needed to determine the utility of these phenotypes in clinical practice and trial design.

SELECTION OF CITATIONS
SEARCH DETAIL